Ionization Constants and Derived Thermodynamic Functions.-Table III contains the values of $K_{2 \mathrm{~A}}$ and $-\log K_{2 \mathrm{~A}}$ at the temperatures designated. In the last column are the deviations between the observed results and those calculated by an equation which expresses the standard free energy as a quadratic function of the absolute temperature. ${ }^{5}$ The numerical equations for $\log K_{2 \mathrm{~A}}$ and the standard thermodynamic functions, derived by the method of least squares are

$$
\begin{gather*}
\log K_{2 \mathrm{~A}}=\frac{-2902.39}{T}+6.4980-0.02379 T  \tag{9}\\
\Delta F^{0}=13278.55-29.7286 T+0.10884 T^{2}  \tag{10}\\
\Delta H^{0}=13278.55-0.10884 T^{2}  \tag{11}\\
\Delta C_{p}^{0}=-0.21768 T  \tag{12}\\
\Delta S^{0}=29.7286-0.21768 T \tag{13}
\end{gather*}
$$

The values of the heat content, heat capacity and entropy at $25^{\circ}$ are $3600 \mathrm{cal} .,-65 \mathrm{cal}$ deg. ${ }^{-1}$ and -35.16 cal. deg. ${ }^{-1}$, respectively. The value $\Delta H^{0}$ agrees with the recent calorimetric result ( $3500 \pm 100$ ) of Pitzer within the error of experiment. Our result also confirms Pitzer's ${ }^{6}$ value of -35.2 for the standard entropy, $\Delta S^{0}$.

The maximum value of the ionization constant is found to occur at $349.3^{\circ} \AA$. and the value of $-\log K_{2 \mathrm{~A}}$ is 10.121 at this temperature.
The following values have been reported for $K_{2 \mathrm{~A}}$ at $25^{\circ}: \mathrm{McCoy},{ }^{7} 6 \times 10^{-11}$; (recalculated by
(5) Harned and Robinson, Trans. Faraday Soc., 36, 973 (1940).
(6) Pitzer, This Journal, 59, 2365 (1937).
(7) McCoy, Am. Chem. J., 29, 437 (1903).

Stieglitz, $5.4 \times 10^{-11}$ ); Seyler and Lloyd, ${ }^{8} 4.3 \times$ $10^{-11}$; Hastings and Sendroy, ${ }^{9} 5.51 \times 10^{-11}$; MacInnes and Belcher, $5.61 \times 10^{-11}$; this measurement, $4.69 \times 10^{-11}$. At $38^{\circ}$, Hastings and Sendroy obtained $6.03 \times 10^{-11}$; MacInnes and Belcher $6.25 \times 10^{-11}$, which are somewhat higher than $5.86 \times 10^{-11}$ obtained by us at this temperature by equation (9).

We take this opportunity to express our thanks to Dr. Gösta Åkerlöf who supervised the construction and design of the apparatus.

## Summary

1. By means of an enclosed gas electrode system, the ionization constant of $\mathrm{HCO}_{3}-$ has been determined at $5^{\circ}$ intervals from 0 to $50^{\circ}$.
2. Equations have been derived from these results by means of which the standard heat content, heat capacity, and entropy of the ionization reaction may be computed. The standard heat content found is in good agreement with that derived from calorimetric measurements.
3. Our values of the ionization constant at $25^{\circ}$ and $38^{\circ}$ are lower than that obtained by recent investigators. This is due to our consistent use of the limiting theoretical equations in making the extrapolations.
(8) Seyler and Lloyd, J. Chem. Soc., 111, 138 (1917).
(9) Hastings and Sendroy, J. Biol. Chem., 65, 445 (1925).

New Haven, Conn. Received March 13, 1941
[Contribution from the Chemical Laboratory of National Southwestern Associated University, Kunming, China]

# Maximum Difference between Densities of Ordinary and Heavy Water 

By Tsing-Lien Chang and Jen-Yuan Chien

Farkas ${ }^{1}$ calculated the density of heavy water below $40^{\circ}$ from the dilatation data of Lewis and Macdonald ${ }^{2}$ and inferred that the differences between the densities of ordinary and heavy water shows a maximum at $25^{\circ}$. By repeating the experiment with quartz pycnometers between 10 and $27^{\circ}$, Stokland, Ronaess and Tronstad ${ }^{3}$ concluded that such a maximum cannot exist below $30^{\circ}$. As the density difference found by them increases by a diminishing amount with increasing
(1) A. Farkas, "Orthohydrogen, Parahydrogen and Heavy Hydrogen," Cambridge, 1935, p. 172.
(2) G. N. Lewis and R. T. Macdonald, Thir Journal, 65, 3057 (1933).
(3) K. Stokland, E. Ronaess and L. Tronstad, Trans. Faraday Soc., 85, 312 (1939).
temperature, it tends indeed to pass through a maximum at a temperature higher than their investigated range. Since ordinary and heavy water have equal density at $370^{\circ},{ }^{4}$ a maximum difference in density necessarily exists.
In the present investigation measurements on the dilatation of heavy water are extended to $50^{\circ}$. It is thereby found that the maximum of density difference between ordinary and heavy water lies at $40^{\circ}$.

## Experimental

A sample of heavy water obtained from Norsk Hydro-

[^0]Elektrisk Kvaelstof A/S, Oslo, was found to contain 99.54 mole $\% \mathrm{D}_{2} \mathrm{O}$ after distillation in vacuum. The calculation of the mole percentage is based on the density value $d^{25}{ }_{25} 1.10764$ for pure heavy water, ${ }^{3,5,6}$

A $16-\mathrm{ml}$. pyenometer of transparent vitreous quartz made by Geyer, Berlin, has a capillary 0.5 nm . in diameter with a small extension near the top. The capillary stem is graduated in millimeters for a length of 5 centimeters. The filling is aided by suction. The ground cap is sealed with mercury during observation. The thermostat used keeps the temperature constant within $+0.002^{\circ}$, while the actual temperature is recorded by a thermometer which las a precision of $+0.02^{\circ}$.

The density of the sample is determined for the ternperature range between 3.8 and $50^{\circ}$. The measurement begins from the region of the density maximum of heavy water. ${ }^{3.5 .7}$ Tiny portions of the sample are removed successively for the measurement of smaller densities. In the calculation of the density of the sample, its volume is corrected for the thermal expansion of vitreous quartz. ${ }^{8}$ All weighings are corrected for the buoyancy of air. The experimental results for 99.54 mole $\% \mathrm{D}_{2} \mathrm{O}$ are shown in Table I.


Fig. 1.-Density difference between ordinary and heavy water: $-d_{99.54 \mathrm{~mol} \% \mathrm{D}_{2} \mathrm{O}-d_{\mathrm{H}_{2} \mathrm{O}} ;-\cdots d_{\mathrm{D}_{8} \mathrm{O}}-}$ $d_{\mathrm{Ho}} \mathrm{O}$.

[^1]Table I

| Measurements on 99.54 Mole\% $\mathrm{D}_{2} \mathrm{O}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| ${ }^{\text {Temp. }}{ }^{\text {c }}$. ${ }^{\text {a }}$, | $\begin{aligned} & \text { Density. } \\ & \text { g./ml. } \end{aligned}$ | ${ }^{\text {Temp. }}{ }^{\circ} \mathrm{C} \text {., }$ | Density, <br> g. $/ \mathrm{ml}$. |
| 4 | 1.10487 | 28 | 1.10322 |
| 5 | 1.10501 | 29 | 1.10296 |
| 6 | 1.10513 | 31.1 | 1.10242 |
| 7 | 1.10523 | 32 | 1.10217 |
| 8 | 1.10530 | 33 | 1.10186 |
| 9 | 1.10535 | 34 | 1.10154 |
| 10 | 1.105.39 | 35 | 1.10121 |
| 11 | 1.10 .540 | 36.1 | 1.10084 |
| 12 | 1.10540 | 37 | 1.10053 |
| 13 | 1.10537 | 37.9 | 1.1002\% |
| 14 | 1.1053; | 39.2 | 1.09977 |
| 15 | 1.10527 | 40 | 1.09948 |
| 16 | 1.10519 | 40.8 | 1.09917 |
| 17 | 1.10510 | 41.3 | 1.09892 |
| 18 | 1.10499 | 42 | 1.09865 |
| 19 | 1.10490 | 42.7 | 1.09836 |
| 20 | 1.10480 | 45.3 | 1.09729 |
| 21 | 1.10465 | 46 | 1.09699 |
| 22 | 1.10448 | 46.7 | 1.09668 |
| 25 | 1.10391 | 49.3 | 1.09555 |
| 26 | 1.10370 | 50 | 1.09523 |
| 27 | 1.10346 |  |  |

Figure 1 shows the difference between the densities of ordinary water ${ }^{9}$ and 99.54 mole $\% \mathrm{D}_{2} \mathrm{O}$. The circles represent the experimental points. Their maximum deviation from the smoothed curve is $\pm 0.00004 \mathrm{~g} . / \mathrm{ml}$. The density differences for 99.54 mole $\% \mathrm{D}_{2} \mathrm{O}$ are then extrapolated to $100 \% \mathrm{D}_{2} \mathrm{O}$, as shown by the dotted curve. Thus, in the order of increasing temperature the density difference at first increases by diminishing amount until it reaches the maximum value $0.10770 \mathrm{~g} . / \mathrm{ml}$. at $40^{\circ}$ and then decreases slowly after $40^{\circ}$.

Table II
Density of Heavy Water below $50^{\circ}$

| Temp., | $\stackrel{d \mathrm{H}_{2} \mathrm{O}}{\mathrm{~g} .} \mathrm{mI} .$ |  | $\underset{\mathrm{g} . / \mathrm{ml} .}{d_{\mathrm{D},}-d_{\mathrm{H}_{2} \mathrm{O}}}$ |
| :---: | :---: | :---: | :---: |
| 3.8 | 1.00000 | 1.10533 | 0.10533 |
| 5 | 0.99999 | 1.10549 | . 10550 |
| 10 | . 99973 | 1.10588 | . 10615 |
| 11.2 | . 99961 | 1.10589 | . 10628 |
| 15 | . 99913 | 1.10577 | . 10664 |
| 20 | . 99823 | 1.10527 | . 10704 |
| 25 | . 99707 | 1.10440 | . 10733 |
| 30 | . 99568 | 1.10321 | . 10753 |
| 35 | . 99406 | 1.10172 | . 10766 |
| 38 | . 99299 | 1.10068 | . 10769 |
| 39 | . 99262 | 1.10032 | . 10770 |
| 40 | . 99225 | 1.09995 | . 10770 |
| 41 | . 99186 | 1.09956 | . 10770 |
| 42 | . 99147 | 1.09917 | . 10770 |
| 43 | . 99107 | 1.09876 | . 10769 |
| 45 | . 99024 | 1.09792 | . 10768 |
| 50 | . 98807 | 1.09572 | . 10765 |

[^2]Table II gives the density differences between ordinary and heavy water for some even temperatures between the freezing point of heavy water and $50^{\circ}$, including a value at its density maximum and some in the neighborhood of the maximum difference. The density values of heavy water given in the third column agree with those of Stokland, Ronaess and Tronstad within $\pm 0.00007 \mathrm{~g} . / \mathrm{ml}$. in the temperature range of their measurement.

Furthermore, the ratio of the densities of ordinary and heavy water, namely, $d_{\mathrm{D}_{2} \mathrm{O}} / d_{\mathrm{H}_{2} \mathrm{O}}$, also
increases by diminishing amount with increasing temperature. Since the ratio becomes 1 at $370^{\circ}$, it must also pass through a maximum. This maximum ratio lies, however, beyond the temperature range of this investigation.

## Summary

The density of heavy water is measured with a quartz pycnometer between its freezing point and $50^{\circ}$. The differences between the densities of ordinary and heavy water show a maximum at $40^{\circ}$. Kunming, China

Received March 22, 1941
[Contribution from the Sterling Chemistry Laboratory of Yale University]

## The Elimination of Liquid Junction Potentials. III. Comparison of the Silver-Silver Chloride and Silver-Silver Bromide Electrodes at $25^{\circ}$

By Benton Brooks Owen and Edward J. King

As a further test of a method proposed ${ }^{1,2}$ for eliminating liquid junction potentials by extrapolation, the standard potentials of the silversilver chloride and silver-silver bromide electrodes were compared by means of the cell

$$
\left.\mathrm{Ag}-\mathrm{AgBr}\left|\begin{array}{c|c}
\mathrm{KBr}(x) m \\
\mathrm{KNO}_{3}(1-x) m
\end{array}\right| \begin{aligned}
& \mathrm{KCl}(x) m \\
& \mathrm{KNO}_{3}(1-x) m
\end{aligned} \right\rvert\, \mathrm{AgCl}-\mathrm{Ag}
$$

The electromotive force of this cell may be expressed by the equation

$$
\begin{equation*}
E=E^{0}-k \log a_{\mathrm{Cl}} / a_{\mathrm{Br}} \pm E_{\mathrm{j}} \tag{1}
\end{equation*}
$$

where $k=0.00019844 T$, and $E_{\mathrm{j}}$ is the unknown liquid junction potential. Keeping $m$ constant, and varying $x$ so that $m_{\mathrm{Br}}=m_{\mathrm{Cl}}$, this equation may be written

$$
\begin{equation*}
E=E^{0}-k \log \gamma_{\mathrm{Cl}} / \gamma_{\mathrm{Br}} \neq E_{\mathrm{j}} \tag{2}
\end{equation*}
$$

In the limit, when $x=0, E_{\mathrm{j}}$ must also be zero. Furthermore the term containing the activity coefficient ratio assumes thermodynamic significance under this condition, and should vary linearly with the ionic strength in dilute solutions. Consequently a value of $E_{x=0}$, obtained by extrapolation against $x$ at constant $m$, differs from $E^{0}$ only by the term $\left[k \log \gamma_{\mathrm{Cl}} / \gamma_{\mathrm{Br}}\right]_{x}=0$ which is proportional to $m . E^{0}$ is determined by extrapolation of $E_{x}=0$ against $m$.

Materials and Technique.-The stock solutions of potassium chloride and nitrate were prepared from the purified salts described in the first

[^3]paper in this series. ${ }^{1}$ The potassium bromide was some of sample B used by Owen and Foering, ${ }^{8}$ and their materials were also used in the preparation of the electrodes. The experimental procedure was similar to that outlined previously, ${ }^{1}$ but the cells were rebuilt to eliminate the intermediate "salt bridge" of potassium nitrate. All measurements were made in duplicate. The average difference between duplicate cell readings was $0.03 \mathrm{~m} . \mathrm{v}$. , and the maximum was $0.07 \mathrm{~m} . \mathrm{v}$. The electromotive forces would remain constant within these limits for a day or more.

## Experimental Results and Discussion

The observed electromotive forces for $m=0.05$ and 0.03 at $25^{\circ}$ are plotted in Fig. 1. Each circle represents the average reading of duplicate cells. The total variation of $E$ with $x$ is so small that the scale of the plot is large enough to permit reading off $E$ to 0.01 m . v. A table of data is therefore omitted. The values of $E_{x}=0$ obtained by extrapolation are 0.15128 at $m=0.05$, and 0.15117 at $m=0.03$. Upon the assumption that $E_{x}=0$ varies linearly ${ }^{1,2}$ with $m$, these results lead to $E^{0}=0.15100$. Since $E^{0}$ for the cell is the difference between the standard potentials of the silver-silver bromide and silver-silver chloride electrodes, it may be computed from the values obtained for these electrodes from cells without liquid junctions. The standard potential of the

[^4]
[^0]:    (4) E. H. Riesenfeld and T. L. Chang, Z. physik, Chem., Bso, 61 (1935).

[^1]:    (5) E. Swift, Jr., Teis Journal, 61, 1293 (1939),
    (6) The density values of pure heavy water given by different authors differ considerably from one another, e. g., P. W. Selwood, H. S. Taylor, J. A. Hipple, Jr., and W. Bleakney [ibid., 57, 642 (1935)] gave $d^{25}{ }_{2 b}$ 1.10790. However, H. L. Johnston [ibid., 61, 878 (1939)] gave $d^{w_{2}} \mathbf{y} 1.10763$.
    (7) T. L. Chang and J. Y. Chien, J. Chinese Chem. Soc., ©, No. 1, (1941).
    (8) 'Int, Crit Tables," Vol. IV, 1928, p. 21.

[^2]:    (9) 'Int. Crit. Tables;' Vol. III, 1928. p. 24.

[^3]:    (1) Owen, This Journal, 60, 2229 (1938).
    (2) Owen and Brinkley, ibid., 60, 2233 (1938).

[^4]:    (3) Owen and Foering, ibid., 58, 1575 (1936).

